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Abstract 6 

We explore the role of specific GABAergic current conductance and decay 7 
time in specific inhibitory synapses in driving macroscopic cortical 8 
oscillations based on two computational neuron models. Simulations using a 9 
previously established thalamocortical network model demonstrate that: 1) 10 
oscillation frequency changes due to increased inhibitory conductance are 11 
dependent on post-synaptic neuron type, 2) changes in inhibitory current 12 
decay time have no effect on oscillation frequency, and 3) large changes in 13 
inhibitory conductance can produce dynamic changes in the network 14 
behavior that is uncaptured by peak oscillation frequency. These results 15 
warrant careful treatment of different types of GABA recipients in 16 
computational models, and motivate further investigat ion in the effects of 17 
substances which promote GABAergic activity, such as propofol. 18 

 19 

1 Introduction  20 

Oscillatory electrical activities are observed in brains and brain regions [1] and have been 21 
instrumental in the analysis of electrophysiological data recorded with macroelectrodes, such as 22 
electroencephalography (EEG) [2]. Although these brain rhythms have been studied extensively in 23 
the past century, their mechanisms of origin and purpose have largely remained mysteries. Recently, 24 
there have been several models of neural networks created to replicate the emergence of brain 25 
rhythms of different varieties, characterized by the frequency band with the highest power [1,3]. In 26 
particular, sub-gamma rhythms (<30Hz) observed in EEG have been explained as the result of a 27 
thalamocortical loop that evokes periodic responses in cortical pyramidal neurons [4], which are 28 
oriented suitably to contribute to the EEG recordings [5]. 29 

Ching, et al. previously published the simulated response of a thalamocortical model to the 30 
anesthetic drug, propofol [6]. They modeled propofol as a systemic increase in the inhibitory 31 
GABAA conductance and time constant. A decrease in oscillation frequency from low gamma 32 
(~40Hz) to alpha rhythms (~10Hz) was observed in the modeled cortical pyramidal cells during 33 
simulated anesthesia. This result matched experimental observations of subjects’ EEG recordings 34 
when losing consciousness after receiving doses of propofol. In this report, we independently 35 
manipulated the synaptic current projections between different neuron classes in a thalamocortical 36 
model to identify the effects of each projection on the system’s overall response. 37 
 38 

2 Models  and Methods  39 

The thalamocortical loop was modeled using the Brian 2.0 package in Python [7]. Neurons 40 



were modeled using either the adaptive-exponential integrate-and-fire (aeIF) model (eq. 1) 41 
[8,9] or Izhikevich neurons (eq. 2) [10]. The model parameters of the aeIF neurons (a,b) were 42 
defined for each cell type in the thalamocortical circuit as by Destexhe [8]. The parameters 43 
for the Izhikevich neurons (a,b,c,d) were provided in [10] for the thalamic and cortical cells 44 
in the network. 45 

Neuron groups and synapses were organized as illustrated in Figure 1. Four classes of neurons 46 
were modeled: pyramidal cortical neurons (PY), fast-spiking cortical interneurons (FS), 47 
thalamocortical relay neurons (TC), and thalamic reticular neurons (RE). Excitatory neurons 48 
(PY and TC) made synapses onto all other neuron groups while inhibitory neurons (FS and 49 
RE) projected only to both neuron groups within their own layer. 50 

The connection probability between neurons was 20%, except for connections from RE which 51 
had an 80% probability of occurring. Excitatory and inhibitory synaptic currents maximal 52 
conductances were 30nS at default for aeIF model, and 30µS for Izhikevich model, due to 53 
differences in intrinsic model parameters. The reversal potential for excitatory (AMPA) 54 
synaptic current was 0mV and for inhibitory (GABA) synaptic current was -80mV. The time 55 
constant for AMPA-mediated synaptic current was 5ms, and for GABA-mediated synaptic 56 
current was 10ms at default. Network activity was initiated at the start of the simulation by 57 
random excitatory input into the PY population for the first 50ms. After this time, network 58 
activity was self-sustained.  59 

For the aeIF model, parameters were adopted from the thalamocortical model by Destexhe [8], 60 
and adjustments were made in network size and connectivity to speed up the simulation 61 
runtime. Specifically, a total of 220 neurons were simulated in the circuit for 10 seconds: 160 62 
PY, 40 FS, 10 TC, and 10 RE. 63 

𝐶
𝑑𝑣

𝑑𝑡
= −𝑔𝐿(𝑣 − 𝐸𝐿) + 𝑔𝐿∆𝑇 exp (

𝑣 − 𝑉𝑇

∆𝑇

) − 𝑔𝐴𝑀𝑃𝐴(𝑣 − 𝐸𝐴𝑀𝑃𝐴) − 𝑔𝐺𝐴𝐵𝐴(𝑣 − 𝐸𝐺𝐴𝐵𝐴) − 𝑤    (1) 64 

𝜏𝑤

𝑑𝑤

𝑑𝑡
= 𝑎(𝑣 − 𝐸𝐿) − 𝑤 65 

𝑟𝑒𝑠𝑒𝑡: 𝑖𝑓 𝑣 > 0𝑚𝑉 ∶ 𝑣 → 𝐸𝐿 , 𝑤 → 𝑤 + 𝑏   66 

The Izhikevich model used similar configurations, but scaled due to intrinsic differences in 67 
the model, specifically constants in the voltage differential equation.  68 

                                             
𝑑𝑣

𝑑𝑡
= 0.04𝑣2 + 5𝑣 + 140 − 𝑢 + 𝐼𝑒𝑥𝑡                                                   (2) 69 

𝑑𝑢

𝑑𝑡
= 𝑎(𝑏𝑣 − 𝑢) 70 

𝑟𝑒𝑠𝑒𝑡: 𝑖𝑓 𝑣 > 30, 𝑣 = 𝑐, 𝑢 = 𝑢 + 𝑑 71 

 72 

Figure 1. Schematic of network connections. Filled triangles represent  excitatory synapses, 73 
and open circles indicate inhibitory synapses. The cortex (top half) is modeled with excitatory 74 
pyramidal (PY) cells and fast-spiking interneurons (FS). The thalamus is modeled by 75 



excitatory thalamocortical cells (TC) and inhibitory thalamic reticular cells (RE). The 76 
inhibitory cells in both layers (FS and RE) inhibit the excitatory neuron group in their layer 77 
as well as themselves. The excitatory cells send projections to all other neuron groups.  78 

EEG signals were estimated from the simulated population by convolving the pyramidal spike 79 
train with a truncated exponential function. The power spectrum was calculated by taking the 80 
fast-Fourier transform of the EEG signal. Peaks of the power spectrum were identified by 81 
smoothing the spectrum with a rectangular window (10Hz width) and defining the oscillatory 82 
frequency as the frequency component with the highest power.  83 

In the experiments below, we varied the inhibitory synaptic current conductance (g GABA) 84 
separately for each class of projections (e.g. RE to TC). The inhibitory synaptic time constant 85 
was also varied in the same manner. 86 

 87 

3 Results   88 

 89 

3 .1  Osc i l la t io ns  in  a  t ha la mi c  c i rcu i t  90 

 91 
In order to observe how synchrony arises in the thalamus, a small circuit of 2 TC and 2 RE 92 

cells was modeled in the absence of a cortex. The TC cells and RE cells were reciprocally 93 

connected, as were the two RE cells to each other. These neurons possess relatively high values 94 

of the ‘a’ parameter in the aeIF model, meaning that a hyperpolarization leads to an excitatory 95 

adaptive current, which allows for the occurrence of rebound spikes. The result, shown in 96 

Figure 2, was rhythmic spiking of the network with a period of approximately 50ms, meaning 97 

a 20Hz oscillation. The ability of the thalamic circuit to generate periodic action potentials 98 

means that it can entrain the cortical pyramidal cells in an oscillation through the TC-PY 99 

projection. The parameters of the neurons in the cortical layer and the interconnections in the 100 

circuit determine the dynamics of the system, leading to cortical oscillations of different 101 

frequencies. These oscillations that arise in the cortical pyramidal cells are observed in the 102 

following models. 103 

 104 
Figure 2. Two thalamocortical relay (TC) and two thalamic reticular (RE) cells interconnected 105 

produce a 20Hz oscillation. (a) Regular firing is observed in the voltage trace of both RE and 106 

TC cells. (b) The adaptive variable (w) in the aeIF model oscillates for both neurons, with the 107 

TC cells having a more negative adaptive current. (c) The raster plot of the 4-neuron network 108 



illustrates only 1 TC cell and both RE cells typically fire in each period. 109 

 110 

3 .2  Inh i b i to ry  sy na pt ic  co nducta nce  e f f ec t  o n  o sc i l la to ry  f requency  111 

 112 
Each of the inhibitory synaptic connections in Figure 1 was manipulated in order to modulate 113 

its effect on the model’s dynamics. First, the synaptic conductance was varied between 0nS 114 

and 60nS in increments of 10nS. In Figure 3, the conductance of the RE-RE synapse was 115 

modified, and an increase in inhibitory conductance yielded a slower oscillation. However, 116 

when the RE-TC conductance was increased, as shown in Figure 4, the opposite trend was 117 

seen. An increase in RE-TC conductance from 30nS to 50nS increased the oscillation 118 

frequency by approximately 50% from a peak at 30Hz to 45Hz. 119 

The trends for each inhibitory projection are summarized in Figure 5. In the case in which the 120 

inhibitory synaptic conductance was strengthened between two inhibitory neurons, the 121 

oscillatory frequency decreased slightly. A higher inhibitory conductance elicits a stronger 122 

inhibitory postsynaptic potential (IPSP) in the target inhibitory neuron. Therefore, that 123 

inhibitory neuron requires more excitatory current and time to reach the spike threshold, which 124 

could serve as the mechanism for a slower oscillation.  125 

In contrast, a significantly faster oscillation is produced when the inhibitory synaptic 126 

conductance is increased to an excitatory target neuron. One possible explanation for this 127 

result is based on a shorter time window for an action potential in the excitatory cells as they 128 

experience greater inhibition. Therefore, the excitatory cells elicit EPSPs in the inhibitory 129 

cells at greater synchrony, with a high probability of eliciting a spike.  This trend was also seen 130 

when all inhibitory synaptic conductances were changed together, which is in direct contrast 131 

to the results of Ching et al. [6].  132 

 133 

 134 

Figure 3. (Left) Raster plots indicate spike times of cortical and thalamic cells for the cases 135 
in which the synaptic conductance between RE cells is 30nS (top) and 50nS (bottom). 136 
(Right) Smoothed power spectrum of simulated EEG signals generated as described in the 137 
models and methods section. An increase in synaptic conductance from 30nS (top) to 50nS 138 
(bottom) leads to a decrease and broadening in the oscillatory frequency.  139 



 140 

Figure 4. (Left) Raster plots indicate spike times of cortical and thalamic cells for the cases 141 
in which the synaptic conductance from RE to TC cells is 30nS (top) and 50nS (bottom). 142 
(Right) Smoothed power spectrum of simulated EEG signals show an increase in synaptic 143 
conductance from 30nS (top) to 50nS (bottom) leads to a faster oscillation.  144 

 145 

Figure 5. Network oscillatory frequency as a function of synaptic conductance. An increase 146 
in inhibitory synaptic conductance onto excitatory neurons (FS-PY and RE-TC) was 147 
correlated with an increase in oscillation frequency, and the opposite trend was true for the 148 
inhibitory synaptic conductance onto inhibitory neurons (FS-FS and RE-RE). In the case in 149 
which all inhibitory synaptic current strengths in the circuit were modified simultane ously, 150 
oscillatory frequency increased. 151 

 152 

3 .3  Inh i b i to ry  sy na pt ic  t ime  co n sta nt  e f f ec t  o n  o sc i l la to ry  f requency  153 

Similarly to how an increase in synaptic conductance yields a stronger IPSP, a decrease in 154 
the synaptic time constant yields a broader IPSP, also resulting in more current flow out of 155 
the cell. The summation of IPSPs from multiple inhibitory presynaptic cells would elicit a 156 
more negative hyperpolarization if their time constants were increased. Therefore, we 157 
hypothesized that in addition to a synapse’s conductance, its decay dynamics would also 158 
modulate the frequency at which the network oscillated. In the experiment performed, the 159 



time constant of inhibitory synapses was varied between 7.5ms and 20ms in increments of 160 
2.5ms. However, modifying the time constant had no regular effect on the rhythm of the 161 
network, as shown in Figure 6. 162 

 163 

Figure 6. Network oscillatory frequency as a function of synaptic time constant. No 164 
consistent effect was observed either by shortening or elongating the synaptic deca y time for 165 
a single class of inhibitory projections or all inhibitory projections.  166 

 167 

3 .4  Netw o rk dy na mics  s ta t e  t ra ns i t io n  168 

Using the Izhikevich model, we aimed to replicate the same findings as those in sections 3.2 169 
& 3.3. However, we report here an interesting phenomenon when a large increase (24µS to 170 
144µS) in inhibitory synaptic conductance is applied to reticular-relay (RETC) synapses. 171 
Figure 7a. shows the simulated EEG trace (400ms) for both low (top) and high (bottom) 172 
conductance conditions. Both EEG recordings are periodic and have similar frequencies 173 
(~13Hz), however, visual inspection of the traces informs us that the two conditions are under 174 
drastically different behavioral states, which the spike raster plots (Figure 7b.) confirm. In the 175 
low conductance condition, all neurons are consistently firing, and the EEG periodicity comes 176 
from weakly synchronized quiescent windows in the pyramidal population. In the high 177 
conductance condition, the network has sharply divided UP and DOWN states, where all firing 178 
stop completely during the DOWN state. The thalamic neurons initiate the UP state, leading 179 
the population firing and triggering an avalanche of spikes in the cortical population.  The latter 180 
behavior are similar to previously described burst firing of thalamic cells during sleep.  181 

 182 

 183 

Figure 7. a) (left) Estimated EEG recording for 400ms. Top: gGABA = 24µS, bottom: 144µS. b) 184 
(right) Spike raster plot of all neurons, blue: PY, green: FS, black: TC, pink: RE 185 

 186 

To investigate the cause of the state change, we focus on the firing dynamics of one particular 187 



thalamocortical relay cell (Figure 8a.), which has excitatory connections to all other neuron 188 
groups. In the low conductance condition, the relay cells fire consistently and rapidly 189 
throughout the simulation, whereas they display a much slower recovery from 190 
hyperpolarization after the previous UP state in the high conductance condition. This behavior 191 
is consistent with most accounts of the thalamic relay cell, where two distinct modes of firing 192 
– tonic and phasic – are observed due to activation of slow calcium dynamics [10]. A closer 193 
look at the phase diagram reveals the underlying neural dynamics (Figure 8b.): when 194 
inhibitory conductance between reticular and relay cells is low, the range of recovery variable 195 
(u) is small, and the entire dynamics resides in the high-u portion of the space. This is likely 196 
due to an upward shift of the node/limit cycle as inhibitory currents have little effects in 197 
canceling out the excitatory currents. In comparison, high inhibitory conductance causes a 198 
downward shift of the limit cycle, effectively equalizing the excitatory input and enables the 199 
slower dynamics. 200 

 201 

 202 

Figure 8. a) (left) Simulated voltage trace of one thalamocortical  relay (TC) cell. Top: gGABA 203 
= 24µS, bottom: 144µS. b) (right) Phase diagram of the same TC cell in a), plotting voltage 204 
against Izhikevich recovery variable, u 205 

Finally, to demonstrate that this qualitative change in behavior is not only an epiphenomenon, 206 
but has functional significance in the cortical network, pairwise firing correlation between 207 
pyramidal cells are computed (Figure 9). Under tonic firing of the relay cells, pyramidal cell 208 
activity remains largely uncorrelated, save for small clusters of neurons, though never 209 
exceeding a correlation coefficient of 0.5 (mean = 0.11). Under phasic (or burst) firing, 210 
however, pyramidal neuron activity becomes highly correlated (mean = 0.63). Correlated 211 
firing encourages information preservation during transfer due to increased redundancy, but 212 
decreases total information rate, which is consistent with the observation that information 213 
processing is turned down during sleep or other states of unconsciousness, such as one induced 214 
through propofol inhalation. 215 

 216 

 217 

Figure 9. Spike correlation of all pyramidal neurons. Left: gGABA = 24µS, mean pairwise 218 
correlation = 0.11; right: 144µS, mean = 0.63 219 

 220 

 221 



4 Conclusion 222 

To summarize, we simulate the effect of altering GABAergic current conductance and decay 223 
time in specific inhibitory synapses has on macroscopic oscillation frequency using aeIF and 224 
Izhikevich neurons. We present three main findings using a previously established 225 
thalamocortical model. First, oscillation frequency changes due to increased inhibitory 226 
conductance are dependent on post-synaptic neuron type: faster oscillations if the post-227 
synaptic neuron is excitatory, and slower if inhibitory. When all inhibitory synaptic 228 
conductances are increased in concert, network oscillation frequency increases, likely driven 229 
by the large number of pyramidal cells in the model. Second, changes in inhibitory current 230 
decay time have no effect on oscillation frequency, at least in the biologically plausible regime 231 
we explored. Third, large changes in inhibitory conductance can produce dynamic changes in 232 
the network behavior that is uncaptured by peak oscillation frequency, switching from regular 233 
spiking of all neurons to periodic ON-OFF states driven by thalamocortical cells.  234 

Our findings have important implications for studying macroscopic osc illations, as well as 235 
using specific oscillatory bands as clinical marker. Since altering synaptic conductance in 236 
different synapses have different effects on the overall oscillation, GABA-enhancing drugs 237 
(e.g. propofol) may act differently depending on the particular receptors of a post-synaptic 238 
cell. Although we only demonstrate the effect of this specificity on macroscopic oscillations, 239 
it likely has cognitive consequences as well. In addition, EEG rhythm has long been used as a 240 
measure of anesthetic levels. As such, our results suggest that a closer examination of 241 
oscillatory dynamics should be considered in the context of different synaptic pairings, 242 
especially when unexpected phenomenon occurs, such as propofol-induced paradoxical 243 
excitation [11].  244 

Finally, we propose several extensions of our work. First, a natural continuation is to consider 245 
the effects of altering excitatory synaptic parameters on network oscillation, as well as other 246 
network parameters such as connection probability, synaptic delays, and model parameters for 247 
both aeIF and Izhikevich neurons. Second, since macroscopic oscillations have been 248 
implicated in synchronization of neuron spiking, our model can be extended by feeding back 249 
the estimated local field into individual neurons. Lastly, behavioral studies should be 250 
conducted to experimentally validate the computational findings, in order to fine-tune the 251 
model such that it can be used in meaningful applications. 252 
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